Upward Point Set Embeddability for Convex Point Sets Is in P
نویسندگان
چکیده
In this paper, we present a polynomial dynamic programming algorithm that tests whether a n-vertex directed tree T has an upward planar embedding into a convex point-set S of size n. Further, we extend our approach to the class of outerplanar digraphs. This nontrivial and surprising result implies that any given digraph can be efficiently tested for an upward planar embedding into a given convex point set.
منابع مشابه
Upward Point-Set Embeddability
We study the problem of Upward Point-Set Embeddability, that is the problem of deciding whether a given upward planar digraph D has an upward planar embedding into a point set S. We show that any switch tree admits an upward planar straight-line embedding into any convex point set. For the class of k-switch trees, that is a generalization of switch trees (according to this definition a switch t...
متن کاملPoint-Set Embeddability of 2-Colored Trees
In this paper we study bichromatic point-set embeddings of 2-colored trees on 2-colored point sets, i.e., point-set embeddings of trees (whose vertices are colored red and blue) on point sets (whose points are colored red and blue) such that each red (blue) vertex is mapped to a red (resp. blue) point. We prove that deciding whether a given 2-colored tree admits a bichromatic point-set embeddin...
متن کاملFixed points for total asymptotically nonexpansive mappings in a new version of bead space
The notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $CAT(0)$ space, where the curvature is bounded from above by zero. In fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. In this paper, w...
متن کاملSweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملUpward Straight-Line Embeddings of Directed Graphs into Point Sets
In this paper we consider the problem of characterizing the directed graphs that admit an upward straight-line embedding into every point set in convex or in general position. In particular, we show that no biconnected directed graph admits an upward straight-line embedding into every point set in convex position, and we provide a characterization of the Hamiltonian directed graphs that admit u...
متن کامل